
FOSSASIA 2025 summit by
Wentao Leo Liu

2

Overview of Whisper-web1

System Decomposition for Scalability2

Containerization with Docker3

Kubernetes Fundamentals4

Minikube Cluster Setup5

Deployment and Service YAML Configuration6

Lessons Learned7

Demo and Molly’s Greetings & Q&A 8

Something about myself0

Agenda

3

• Cloud native learner

• Apache OpenMeetings contributor

• AI Video translator, transcriber

• Startup Founder omfoss.com

• Talked in FOSSASIA summit 2023

Budapest

Changsh
a

Beijing

Shenzhen

Hangzhou
Brussels

Singapore

Guangzhou
Bangkok

My Open Source Road From 2015 To 2025

7

• What is Whisper Web?
ML-powered speech recognition directly in your browser! Built with

Transformers.js TypeScript
Experimental WebGPU support has been added for GPU acceleration

• Openai whisper models
Whisper is a general-purpose speech recognition model. It is trained on a large

dataset of diverse audio (680K hours)
 a multitasking model that can perform multilingual speech recognition, speech

translation, and language identification
Whisper's code and model weights are released under the MIT License.

https://github.com/xenova/transformers.js

Size Parameters
English-only

model
Multilingual

model
Required VRAM Relative speed

tiny 39 M tiny.en tiny ~1 GB ~10x

base 74 M base.en base ~1 GB ~7x

small 244 M small.en small ~2 GB ~4x

medium 769 M medium.en medium ~5 GB ~2x

large 1550 M N/A large ~10 GB 1x

turbo 809 M N/A turbo ~6 GB ~8x

Models and Parameters

9

Running locally
1. Clone the repo and install dependencies:

git clone https://github.com/xenova/whisper-web.git
cd whisper-web
npm install

2. Run the development server
 npm run dev
3. Open the application in your browser
 https://localhost:5173
 Note:if you wish to run this in dev mode in firefox, you will have to enable it manually via
 about:config and set dom.workers.modules.enabled to true

The frontend serves as the user

interface, allowing users to upload

audio files and view transcriptions.

It is built using React and Node.js,

providing a responsive and

interactive experience.

Frontend Component

The Model Service runs the Whisper

model for speech-to- text

transcription.

It leverages PyTorch and CUDA for

high- performance inference on

GPUs.

Model Service

The API Gateway routes requests to

the appropriate services and handles

authentication.

It ensures secure and efficient

communication between the

frontend and backend services.

API Gateway

Microservice Architecture

11

• Docker image selection
• Choosing the right base image is crucial for performance and compatibility.
• For a high speed model service, a CUDA base image is required to enable GPU

acceleration.
• Dependency management

• Docker allows for the installation of necessary dependencies within the container.
• This ensures consistency and avoids conflicts between different components.

• Multistage Builds
• Multi- stage builds help reduce the final image size by separating build and runtime

stages.
• This improves security and reduces the attack surface of the container.

FROM node:20 # select the base image

WORKDIR /whisper-web # setting work directory

COPY . . # copy project files

RUN npm install # install dependencies

EXPOSE 5173 # expose port

CMD ["npm", "run", "dev"] # define the cmd to start the app

A simplest Dockerfile

Pods

Pods are the smallest deployable units in Kubernetes,

containing one or more containers.

They share resources such as storage and network, enabling

efficient resource utilization.

Control Plane
The Control Plane manages the cluster,

including the API Server, Scheduler, and etcd.

It ensures the desired state of the cluster is

maintained and provides high availability.

Nodes
Nodes are the worker machines that run the

pods.

They can be physical or virtual machines,

providing the necessary compute resources.

Kubernetes Architecture

https://richardroseblog.wordpress.com/2017/11/01/minikube-creating-a-cluster/

https://www.linkedin.com/pulse/day-32-task-launching-your-kubernetes-cluster-
deployment-singh/

https://richardroseblog.wordpress.com/2017/11/01/minikube-creating-a-cluster/

Installation Process

Minikube requires Docker, kubectl,

and itself to be installed on the local

machine.

It provides a simple way to run a

single- node Kubernetes cluster for

development purposes.

Starting the Cluster

The cluster can be started with specific configurations such as CPU and

memory allocation.

Enabling addons like Ingress allows for advanced networking capabilities.

Benefits of Minikube

Minikube simulates a production- like

environment, making it easier to test

deployments locally.

It allows developers to experiment with

Kubernetes without the need for a full

production setup.

Setting up Minikube

Install docker https://docs.docker.com/engine/install/ubuntu/

Testing
sudo docker run hello-world

Install minikube
curl -LO https://github.com/kubernetes/minikube/releases/latest/download/minikube-linux-amd64

sudo install minikube-linux-amd64 /usr/local/bin/minikube && rm minikube-linux-amd64

Install kubectl https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/

Start minikube cluster

Deployment YAML

The Deployment YAML file

defines the desired state of the

application, including the number

of replicas.

It specifies the container image

and resource requirements, such

as GPU limits for AI workloads.

Label selectors are used to match

pods with the desired

deployment.

They ensure that the correct pods

are managed and scaled

according to the deployment

specifications.

Deployments can be scaled

horizontally by adjusting the

number of replicas.

This provides redundancy and

ensures high availability of the

application.

Label SelectorsDeployment Structure Scaling and Redundancy

Service YAML

The Service YAML file exposes pods to

the outside world or within the cluster.

It provides a stable IP address and DNS

name for accessing the application.

ClusterIP services are used for internal

communication between pods.

NodePort services expose the

application on a specific port of the

node, allowing external access.

Services can also provide load

balancing across multiple pods,

ensuring even distribution of traffic.

01Exposing Services 02Service Types 03Load Balancing

apiVersion: apps/v1
kind: Deployment
metadata:

name: whisperweb-app
spec:

replicas: 2
selector:
 matchLabels:
 app: whisperweb-app
template:
 metadata:
 labels:
 app: whisperweb-app
spec:
 containers:
 - name: whisperweb-app

 image: cscmucmm/whisperweb-node-app:latest
 imagePullPolicy: Never
 ports:
 - containerPort: 5173

apiVersion: v1
kind: Service
metadata:
 name: whisperweb-app-service
spec:
 selector:
 app: whisperweb-app
 ports:
 - protocol: TCP
 port: 80
 targetPort: 5173
 type: LoadBalancer

deployment.yaml service.yaml

http_proxy and no_proxy environment variable setup

When using proxy to access internet, we need setup http_proxy and no_proxy environment

variable for accessing internet resources and bypassing proxy for a certain range of IP address.

Under the circumstance of no internet connection to docker.io service, you can not pull

base images, so you need configure mirror image source or using proxy to pull kicbase

image

Using mirror image

Reduce Docker container image size

We use multi-stage build to reduce docker image size from 1.5G to 48M. This improvement

greatly reduce the deployment time.

Challenges and Solutions

FROM node:16-alpine AS build # Build stage. Using node:16-alpine image as a base image

WORKDIR /whisper-web # Create app directory

COPY . . # Copy the source files

npm install # Install app dependenciesRUN

RUN npm run build # Build the React app for production

FROM nginx:alpine # Serve the application stage

COPY --from=build /whisper-web/dist /usr/share/nginx/html # Copy build files to Nginx

EXPOSE 80 # expose port

CMD ["nginx", "-g", "daemon off;"] #cmd to run nginx

Multi-stage build dockerfile

Starting the
Cluster

The demo begins with starting a Minikube cluster with docker driver. This sets up

the environment for deploying the GenAI application.

Deploying
Services

Two deployments and services, using single stage build and multi-stage build

docker images, are deployed using kubectl apply.

This demonstrates the ease of deploying applications on Kubernetes.

Transcribing
Audio

An audio file is transcribed using the deployed application.

And an audience will record voice and testing the transcribing.

Note: Need close the system proxy setup

Demo steps

Molly’s greetings created by GenAI & Q/A session

THANK
YOU

Wentao Liu
+86-18670022879
wliu@omfoss.com
www.omfoss.com

	Happy Integration! Insights Of Deploying GenAI Applications On Minikube
	幻灯片编号 2
	0 Something About Myself
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	1 Overview of Whisper-web�
	幻灯片编号 8
	幻灯片编号 9
	2 System Decomposition for Scalability
	3 Containization with Docker
	幻灯片编号 12
	4 Kubernetes Fundamentals
	幻灯片编号 14
	5 Minikube Cluster Setup
	Installation process
	6 Deployment and Service configuration
	幻灯片编号 18
	幻灯片编号 19
	7 Lessons learned
	幻灯片编号 21
	8 Live Demo & Molly’s Greetings & Q/A
	幻灯片编号 23
	Thank �you

